
Rust at

1

Zelda Hessler
Engineering Lead
Developer Tools Team

What we’re doing2
OAuth helper CLIs
An app manager CLI
Infrastructure-as-code templating tools
A Slack bot

1
How we got here

My background
Why Rust
The Developer Tools team

2

3 What we’re looking forward to

Desktop apps for IAC templating
Using Rust libraries in non-Rust codebases

#

3

1 How we got here

Hi. My name is Zelda Hessler

- I started my programming career as a self-taught web developer in 2016

- I have been a Rust enthusiast for about the same amount of time

- I started at Tempus in 2019 as a full stack web developer and became an Engineering Lead at
the start of this year

- I am a Rust mentor in Tempus’ mentorship program and I have taught classes on Rust as part
of the “Tempus Board of Education” initiative

- I’ve hosted the Chicago Rust Meetup since 2018 and have given several talks, typically
focused on Rust from a beginner’s perspective

- I’ve created many generative art apps with Rust which you can view on my website

If it’s not completely clear, I’m a bit obsessed with the language

My Background

4

https://zeldas.page

- Rust is a modern language with a C-like syntax that most developers will find familiar
- Rust apps can be compiled for the targets we care about (Linux, MacOS, Windows)

- Because the apps are native, users don’t need to install a runtime
- There exist great frameworks for CLI apps

- We currently use clap and have used seahorse in the past
- Rust’s error handling paradigm is great

- In our apps, we wrap errors in more errors, each less specific than the last. Regular users
only see friendly, top-level errors. Power users can easily opt-in to more detailed,
technical error messages.

- Rust has first-class tooling
- cargo fmt keeps everyone’s code uniform
- cargo clippy helps new teammates write idiomatic Rust code from day one

- Whether you’re extending, refactoring, or starting a new app, once it passes compilation, you
can be confident that it’s not (too) buggy

Why Rust?

5

https://lib.rs/crates/clap
https://lib.rs/crates/seahorse

The Developer Tools Team (DevTools for short) creates apps to help developers.
Our process involves:

- Finding the most annoying problems that Tempus developers run into

- Working with those developers to find out if those problems can be fixed with a
technological solution

- Creating that solution using the tools that we think are the most appropriate

- Repeated user testing to ensure that tool not only solves the problem, but provides a great
user experience

- Creating a CI/CD pipeline to build, test, and release multiple versions of the app

- Educating people on its use either with one-on-ones, presentations, and/or documentation

- Receiving user feedback, fixing bugs, and adding new capabilities as necessary

The Developer Tools Team

6

7

2 What we’re doing

C O N F I D E N T I A L | T E M P U S

We manage two CLI apps that help users get OAuth tokens
from our OAuth provider and optionally exchange the tokens
for other kinds of credentials (like AWS access keys.)

8

OAuth
Helper

CLIs

C O N F I D E N T I A L | T E M P U S

The people that use our apps have differing levels of technical
expertise. We found that some users had trouble following
install instructions for our apps that involved curl and chmod.
We considered Homebrew but found the support for private
tools to be less than stellar so we decided to create our own
tool. It allows users to install and update apps and easily
switch between production and early-release versions.

9

App
Manager

CLI

C O N F I D E N T I A L | T E M P U S

IAC - short for Infrastructure-as-code - is how we manage
servers, databases, and deployments at Tempus. Our IAC is
defined in HCL and applied by Terraform. We believe in
self-service and want to enable our Engineering teams to
provision their own infrastructure. However, we wanted to
remove the need for them to learn HCL and how to adhere to
the best practices defined by our DevOps Engineers. We’ve
accomplished this by creating a wizard that walks people
through a short form. The app then uses the form data to
create multiple pull requests on behalf of the user and submits
them to the appropriate IAC repositories.

10

IAC
Templating

Tools

https://github.com/hashicorp/hcl
https://www.terraform.io/

C O N F I D E N T I A L | T E M P U S

We run a Slack bot that monitors locks on our IAC state set by
humans. If some state is locked, any attempt to change it will
fail. People lock state in order to perform manual adjustments
when things break or to perform maintenance that can’t be
completed through our IAC automation system. It’s easy to
forget that you’re holding a lock and unintentionally block
other users from making changes.

The Slack bot checks each morning for outstanding locks and
notifies users by @-ing them

11

Slack
Bot

12

3 What we’re looking forward to

C O N F I D E N T I A L | T E M P U S

Our first IAM templater covers one common use case but
won’t support any more than that. Instead future templating
apps will each be released as a separate tool. We’re also going
to improve the user experience by introducing Tauri,
essentially a better Electron that allows us to write the
backend in Rust. Tauri will allow us to rely on the same
components that Tempus already provides to our front end
web app engineers while allowing us to do things that a web
app couldn’t.

13

More IAC
Templating

Tools

https://tauri.studio/
https://github.com/tauri-apps/tauri#comparison-between-tauri-and-electron

C O N F I D E N T I A L | T E M P U S

My team has been supporting another team at Tempus that is
developing an SDK for their service with Rust. The SDK can
then be compiled and packaged for use in Node or Python
apps with the hope of greatly reducing the burden of having to
write and maintain an SDK for each language they want to
support.

14

Multi-language
SDKs

- Katie Schilling
- Thomas Hatzopoulos
- Matt Kemp

Thanks to everyone else that enabled me to do this

15

